当前位置: 首页 > news >正文

廊坊手机模板建站百度指数搜索榜度指数

廊坊手机模板建站,百度指数搜索榜度指数,做旅游网站的数据怎么来,学计算机好还是大数据思路: 1、发送请求,解析html里面的数据 2、保存到csv文件 3、数据处理 4、数据可视化 需要用到的库: import requests,csv #请求库和保存库 import pandas as pd #读取csv文件以及操作数据 from lxml import etree #解析html库 from …

思路:

1、发送请求,解析html里面的数据

2、保存到csv文件

3、数据处理

4、数据可视化

需要用到的库:

import requests,csv  #请求库和保存库
import pandas as pd  #读取csv文件以及操作数据
from lxml import etree #解析html库
from pyecharts.charts import *  #可视化库

注意:后续用到分词库jieba以及词频统计库nltk 

环境:

python  3.10.5版本

编辑器:vscode -jupyter

使用ipynb文件的扩展名 vscode会提示安装jupyter插件

一、发送请求、获取html

#请求的网址
url='https://ssr1.scrape.center/page/1'#请求头
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36"
}#发起请求,获取文本数据  
reponse=requests.get(url,url,headers=headers)
print(reponse)

二、使用xpath提取html里面的数据并存到csv

#创建csv文件
with open('电影数据.csv',mode='w',encoding='utf-8',newline='') as f:#创建csv对象csv_save=csv.writer(f)#创建标题csv_save.writerow(['电影名','电影上映地','电影时长','上映时间','电影评分'])for page in range(1,11):  #传播关键1到10页的页数#请求的网址url='https://ssr1.scrape.center/page/{}'.format(page)print('当前请求页数:',page)#请求头headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.0.0 Safari/537.36"}response=requests.get(url,url,headers=headers,verify=False)print(response)html_data=etree.HTML(response.text)#获取电影名title=html_data.xpath('//div[@class="p-h el-col el-col-24 el-col-xs-9 el-col-sm-13 el-col-md-16"]/a/h2/text()')#获取电影制作地gbs=html_data.xpath('//div[@class="p-h el-col el-col-24 el-col-xs-9 el-col-sm-13 el-col-md-16"]/div[2]/span[1]/text()')#获取电影时长time=html_data.xpath('//div[@class="m-v-sm info"]/span[3]/text()')#获取电影上映时间move_time=html_data.xpath('//div[@class="p-h el-col el-col-24 el-col-xs-9 el-col-sm-13 el-col-md-16"]/div[3]/span/text()')#电影评分numder=html_data.xpath('//p[@class="score m-t-md m-b-n-sm"]/text()')for name,move_gbs,times,move_times,numders in zip(title,gbs,time,move_time,numder):print('电影名:',name,'  电影上映地址:',move_gbs,'   电影时长:',times,'   电影上映时间:',move_times,'   电影评分:',numders)#name,move_gbs,times,move_times,numders#写入csv文件csv_save.writerow([name,move_gbs,times,move_times,numders])

效果:

三、使用pandas打开爬取的csv文件

data=pd.read_csv('电影数据.csv',encoding='utf-8')
print(data)

四、对电影名进行分词以及词频统计

注意:使用jieba分词,nltk分词  

这里的停用此表可以自己创建一个  里面放无意义的字,比如:的、不是、不然这些

每个字独占一行即可

import jiebatitle_list=[]for name in data['电影名']:#进行精准分词lcut=jieba.lcut(name,cut_all=False)
#     print(lcut)for i in lcut :
#         print(i)#去除无意义的词#打开停用词表文件file_path=open('停用词表.txt',encoding='utf-8')#将读取的数据赋值给stop_words变量stop_words=file_path.read()#遍历后的值 如果没有在停用词表里面 则添加到net_data列表里面if i not in stop_words:title_list.append(i)
# print(title_list)#计算词语出现的频率
from nltk import FreqDist #该模块提供了计算频率分布的功能#FreqDist对象将计算net_data中每个单词的出现频率,,并将结果存储在freq_list中
freq_list=FreqDist(title_list)
print(freq_list)  #结果:FreqDist 有1321个样本和5767个结果 #该方法返回一个包含最常出现单词及其出现频率的列表。将该列表赋值给most_common_words变量。
most_common_words=freq_list.most_common()
print(most_common_words)  #结果:('The这个词',出现185次)

效果:

五、词云可视化

# 创建一个 WordCloud类(词云) 实例  
word_cloud = WordCloud()  # 添加数据和词云大小范围    add('标题', 数据, word_size_range=将出现频率最高的单词添加到词云图中,并设置单词的大小范围为 20 到 100。)  
word_cloud.add('词云图', most_common_words, word_size_range=[20, 100])  # 设置全局选项,包括标题  
word_cloud.set_global_opts(title_opts=opts.TitleOpts(title='电影数据词云图'))  # 在 Jupyter Notebook 中渲染词云图  
word_cloud.render_notebook()#也可以生成html文件观看
word_cloud.render('result.html')

运行效果:

 

六、对电影时长进行统计并做柱形图可视化

#电影时长   去除分钟和,号这个 转为int  然后再转为列表  只提取20条数据,总共100条
move_time=data['电影时长'].apply(lambda x: x.replace('分钟', '').replace(',', '')).astype('int').tolist()[0:20]
# print(move_time)#电影名   只提取20条数据
move_name=data['电影名'].tolist()[0:20]
# print(move_name)#创建Bar实例
Bar_obj=Bar()#添加x轴数据标题
Bar_obj.add_xaxis(move_name)#添加y轴数据
Bar_obj.add_yaxis('电影时长数据(单位:分钟)',move_time)#设置标题
Bar_obj.set_global_opts(title_opts={'text': '电影时长数据柱形图可视化'})# 显示图表
Bar_obj.render_notebook()

效果:

七、电影时长折线图可视化


#去除分钟和,号这个 转为int  然后再转为列表  只提取25条数据
move_time=data['电影时长'].apply(lambda x: x.replace('分钟', '').replace(',', '')).astype('int').tolist()[0:25]
# print(move_time)#电影名   只提取25条数据
move_name=data['电影名'].tolist()[0:25]
# print(move_name)#创建Bar实例
Bar_obj=Line()#添加x轴数据标题
Bar_obj.add_xaxis(move_name)#添加y轴数据
Bar_obj.add_yaxis('电影时长数据(单位:分钟)',move_time)#设置标题
Bar_obj.set_global_opts(title_opts={'text': '电影时长数据折线图可视化'})# 显示图表
Bar_obj.render_notebook()

效果:

 

八、统计每个国家电影上映的数量

import jiebatitle_list=[]#遍历电影上映地这一列
for name in data['电影上映地']:#进行精准分词lcut=jieba.lcut(name,cut_all=False)
#     print(lcut)for i in lcut :
#         print(i)#去除无意义的词#打开停用词表文件file_path=open('停用词表.txt',encoding='utf-8')#将读取的数据赋值给stop_words变量stop_words=file_path.read()#遍历后的值 如果没有在停用词表里面 则添加到net_data列表里面if i not in stop_words:title_list.append(i)
# print(title_list)#计算词语出现的频率
from nltk import FreqDist #该模块提供了计算频率分布的功能#FreqDist对象将计算net_data中每个单词的出现频率,,并将结果存储在freq_list中
freq_list=FreqDist(title_list)
print(freq_list)  #结果:FreqDist 有1321个样本和5767个结果 #该方法返回一个包含最常出现单词及其出现频率的列表。将该列表赋值给most_common_words变量。
most_common_words=freq_list.most_common()
print(most_common_words)  #结果:('单人这个词',出现185次)#电影名 使用列表推导式来提取most_common_words中每个元素中的第一个元素,即出现次数,然后将它们存储在一个新的列表中
map_data_title = [count[0] for count in most_common_words]  
print(map_data_title)#电影数
map_data=[count[1] for count in most_common_words]  
print(map_data)

效果:

九、对每个国家电影上映数量饼图可视化

#获取map_data_title的长度,决定循环次数,赋值给遍历i 在通过下标取值 
result = [[map_data_title[i], map_data[i]] for i in range(len(map_data_title))]
print(result)# 创建Pie实例
chart=Pie()#添加标题和数据   radius=['圆形空白处百分比','色块百分比(大小)'] 可不写
chart.add('电影上映数饼图(单位:个)',result,radius=['50%','60%'])#显示
chart.render_notebook()

效果:

觉得有帮助的话,点个赞!

http://www.pjxw.cn/news/25397.html

相关文章:

  • 做网站软件图标是一个箭头的湖南产品网络推广业务
  • 做企业网站的架构图seo权重查询
  • wordpress编辑者无法上传图片河南网站优化公司
  • 滨州做网站公司灰色行业关键词优化
  • 华夏名网网站建设哈尔滨最新今日头条新闻
  • 可以做动画的网站都有哪些软件下载各城市首轮感染高峰期预测
  • 成人高考成绩查询关键词推广seo怎么优化
  • 淘宝客做网站链接网络营销策划书800字
  • 十堰网站制作北京seo关键词排名
  • 网站建设的英语怎么说seo常用工具
  • 可以拔下来做的网站吗中国国家培训网正规吗
  • 免费软件在线下载如何优化关键词提升相关度
  • 个人网站设计分类百度联系方式
  • 简历网站推荐线上线下推广方案
  • 北京广告公司名录seo优化网站优化
  • 最浪漫的编程代码可复制厦门seo代运营
  • 湖北省城乡建设厅网站北京网站优化托管
  • php做网站时间代码凡科建站登录
  • 龙华品牌网站制作郑州百度网站优化排名
  • 做网站培训班windows优化大师win10
  • 请问怎么做网站常见的营销方式有哪些
  • 商务网站建设方案ppt微信公众号推广
  • 西安网站建设公司找哪家营销技巧和话术
  • 网站处于建设中会显示什么英文营销培训课程内容
  • 网站速度测试怎么开设自己的网站
  • 有没有那个网站是做点心的信息检索关键词提取方法
  • 北京移动官网网站建设seo求职
  • 界首网站优化公司百度官网电话
  • 制作精美网站建设服务周到信息流推广渠道有哪些
  • 网站翻新后seo怎么做seo描述是什么